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CONSPECTUS: Natural enzymes, exquisite biocatalysts mediating every
biological process in living organisms, are able to accelerate the rate of chemical
reactions up to 1019 times for specific substrates and reactions. However, the
practical application of enzymes is often hampered by their intrinsic drawbacks,
such as low operational stability, sensitivity of catalytic activity to environ-
mental conditions, and high costs in preparation and purification. Therefore,
the discovery and development of artificial enzymes is highly desired. Recently,
the merging of nanotechnology with biology has ignited extensive research
efforts for designing functional nanomaterials that exhibit various properties
intrinsic to enzymes. As a promising candidate for artificial enzymes,
catalytically active nanomaterials (nanozymes) show several advantages over
natural enzymes, such as controlled synthesis in low cost, tunability in catalytic
activities, as well as high stability against stringent conditions.
In this Account, we focus on our recent progress in exploring and constructing
such nanoparticulate artificial enzymes, including graphene oxide, graphene-hemin nanocomposites, carbon nanotubes, carbon
nanodots, mesoporous silica-encapsulated gold nanoparticles, gold nanoclusters, and nanoceria. According to their structural
characteristics, these enzyme mimics are categorized into three classes: carbon-, metal-, and metal-oxide-based nanomaterials. We
aim to highlight the important role of catalytic nanomaterials in the fields of biomimetics. First, we provide a practical
introduction to the identification of these nanozymes, the source of the enzyme-like activities, and the enhancement of activities
via rational design and engineering. Then we briefly describe new or enhanced applications of certain nanozymes in biomedical
diagnosis, environmental monitoring, and therapeutics. For instance, we have successfully used these biomimetic catalysts as
colorimetric probes for the detection of cancer cells, nucleic acids, proteins, metal ions, and other small molecules. In addition,
we also introduce three exciting advances in the use of efficient modulators on artificial enzyme systems to improve the catalytic
performance of existing nanozymes. For example, we report that graphene oxide could serve as a modulator to greatly improve
the catalytic activity of lysozyme-stabilized gold nanoclusters at neutral pH, which will have great potential for applications in
biological systems. We show that, through the incorporation of modulator into artificial enzymes, we can offer a facile but highly
effective way to improve their overall catalytic performance or realize the catalytic reactions that were not possible in the past.
We expect that nanozymes with unique properties and functions will attract increasing research interest and lead to new
opportunities in various fields of research.

1. INTRODUCTION

Enzymes are extremely efficient at catalyzing a variety of
reactions with high substrate specificity, activities, and yields
under mild reaction conditions.1,2 As a result, there is significant
interest in utilizing enzymes for applications in biosensor,
pharmaceutical processes, food industry, and agrochemical
production. However, problems, including their low operational
stability (denaturation and digestion), sensitivity of catalytic
activity to environmental conditions, difficulties in recovery and
recycling, and high costs in preparation and purification, greatly
limit their applications.3,4 To circumvent aforementioned
limitations, artificial enzymes have been established as low-
cost and highly stable alternatives to natural enzymes.5−7 So far,
design of artificial enzymes has very rapidly emerged as a lively
field of research. Recently, the merging of nanotechnology with

biology has also ignited intensive research efforts for designing
functional nanomaterials that exhibit various properties intrinsic
to enzymes.6,8−25 A variety of nanoscale materials, such as
cerium oxide nanoparticles,8−10 magnetic nanoparticles,3,11,12

gold nanoparticles (AuNPs),13−18 V2O5,
19,20 PtPd−Fe3O4,

21,22

graphene oxide,23 and carbon nanotubes,24 have been
discovered to possess unique enzyme-mimic catalytic activities.
Due to the outstanding catalytic property of thiol monolayer
protected nanogold, Scrimin, Pasquato, and co-workers called it
“nanozyme” in analogy to the nomenclature of catalytic
polymer (synzyme).25 Here, to highlight enzyme-like activity
of the nanomaterial, we adopt the term ‘‘nanozyme’’ to describe
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a man-made nanomaterial that is capable of simulating catalytic
function demonstrated by natural enzyme.
In this Account, we will review our years’ efforts in exploring,

constructing, and improving nanoparticulate artificial enzymes,
inspired by their advantages. The scope intends to cover not
only the design and development of these nanozymes, but also
their promising applications and the search for efficient
modulators for promoting catalysis. In addition, the perspec-
tives on main challenges and future opportunities are also
discussed.

2. NANOPARTICULATE ARTIFICIAL ENZYMES

For ease of access, the examples treated in this Account are
classified according to the structural characteristics of nano-
zymes: carbon-, metal-, and metal-oxide-based nanomaterials.

2.1. Carbon-Based Nanomaterials

Until now, carbon-based nanomaterials have been discovered to
possess peroxidase-like23,24,26−32 or superoxide dismutase-like33

activity. Our lab contributed much effort to the peroxidase-like
activity of graphene oxide,23 graphene−hemin nanocompo-
sites,28,29 carbon nanotubes,24,30 and carbon nanodots.31

As an atomically thick sheet of sp2-hybridized carbon atoms,
graphene-based material has recently emerged as a rapidly
rising star.34,35 Intriguingly, we made the surprising discovery
that carboxyl-modified graphene oxide (GO−COOH) can
serve as an effective peroxidase mimic, which catalyzes the
reaction of peroxidase substrate 3,3,5,5-tetramethylbenzidine
(TMB) in the presence of H2O2 to produce a blue color
reaction.23 Similar to horseradish peroxidase HRP, the catalytic
activity of the GO−COOH was dependent on pH, temperature
and H2O2 concentration.23 After that, we investigated the
mechanism of catalytic graphene oxide through studying the
interactions between GO−COOH, H2O2 and TMB. First, the
different absorption spectra show that a bathochromic shift
occurs for GO−COOH upon the addition of H2O2.

23 The
shifted absorbance suggests that electron transfer occurs from
the top of the valence band of graphene to the lowest
unoccupied molecular orbital (LUMO) of H2O2.

36,37 Mean-
while, since TMB can be absorbed on the surface of graphene
and donates lone-pair electrons in the amino groups to
graphene, TMB will confer an increase in electron density and
mobility in graphene.23 Such a charge-transfer n-type doping of
graphene increases the Fermi level and thus the electrochemical
potential from the LUMO of H2O2.

36 This accelerates the
electron transfer from graphene to H2O2.

23 As a result, nitrogen
enrichment in this way provides a higher density of catalytically
active centers with low stereo hindrance for binding redox
species.23 On the basis of the intrinsic peroxidase property of
GO−COOH, we designed a simple, cheap, and highly sensitive
and selective colorimetric method for glucose detection by
coupling graphene-based nanozyme with glucose oxidase
(GOx) (Figure 1).23 In our experiment, glucose could be
detected as low as 1 μM, and the protocol exhibited excellent
selectivity over other interferences.23 More significantly, our
method has shown great potential for analysis of glucose level
in diluted blood and commercial fruit juices.23 Thereafter,
Huang and co-workers used this catalytically active nanoma-
terial for colorimetric detection of cancer biomarker prostate
specific antigen.38

Apart from the intrinsic catalytic activity, graphene and its
derivatives can also be utilized as good supports for
heterogeneous catalytic processes due to their large specific

surface areas.26,27 Moreover, they possess a rich surface
chemistry and have the potential to further promote the
catalytic activity and stability of the supported molecular
systems.26,27 For instance, as a well-known natural metal-
loporphyrin, hemin can be assembled onto the surface of
graphene through π−π stacking.26,27 As a result, the hemin−
graphene nanocomposite (GH) can function as a highly
effective catalyst in the oxidation reaction of peroxidase
substrate.26,27 Recently, we reported a colorimetric assay for
quantitative and fast detection of cancer cells based on the
synergetic peroxidase-like activity of folic acid conjugated
graphene−hemin hybrid (GFH) (Figure 2).28 Figure 2A

illustrates the basic procedure for the fabrication of GFH.
Since folate receptors are overexpressed on the surface of
different types of cancer cells, GFH could selectively bind to
the surface of cancer cells by targeting folate receptors, such as
human cervical cancer cells (HeLa) and human breast cancer
cells (MCF-7).28 Owing to the large size and peroxidase-
mimicking activity of GFH, selective GFH binding not only
could be visualized under bright field microscopy, but also
could be quantitatively determined by a colorimetric method
(Figure 2B).28 With the optimized protocol, as few as 1000
cells could be detected.28 Later, we further developed a robust
sensing strategy by utilizing the catalytic GH to detect a broad
range of targets including metal ions, DNA, and small
molecules (Figure 3).29 This nearly “universal” biosensor
approach is based on DNA-directed assembly of GH by
targets.29 In the absence of targets, GH is stable as DNA

Figure 1. Colorimetric detection of glucose by using GOx and GO−
COOH-catalyzed reactions.23 Copyright 2010, Wiley-VCH.

Figure 2. Schematic representation of (A) preparation of GFH and
(B) cancer cell detection by using target-directed GFH.28 Copyright
2011, Royal Society of Chemistry.
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hybridization between ssDNA probes does not happen. When a
particular target is present, GH aggregate resulting from DNA
hybridization will occur. Consequently, the colorimetric signal
of the centrifugal supernatant will be significantly lower
compared to that without targets.29 This colorimetric “readout”
offers great advantages of simple operation process, low-cost
portable instrument, and easy-to-use applications.29 More
importantly, we can detect a broad range of other different
targets, such as coralyne and DNA, only by changing label-free
and target-specific ssDNA probes.29 Therefore, such an
apparently simple method holds great potential of becoming
a routine tool for quantitative detection of a wide spectrum of
analytes.
In recent years, carbon nanotubes (CNTs) have also

attracted considerable attention.39,40 They are classified in
two main categories: single-wall carbon nanotubes (SWNTs)
and multiwall carbon nanotubes (MWNTs), depending on the
number of graphene layers.40 Like COOH−GO, we demon-
strated for the first time that SWNTs possess intrinsic
peroxidase-like activity.24 Inspired by the intrinsic peroxidase
property of CNTs, we further reported a label-free colorimetric
detection system for disease-associated single nucleotide
polymorphism (SNPs) in human DNA (Figure 4A).24 At
optimum salt concentration, ssDNA could strongly adsorb on
the SWNT surface and increase electrostatic repulsion due to
the π−π stacking interaction, thus resisting salt-induced SWNT
aggregation. In contrast, dsDNA could not stably adsorb on
SWNT, resulting in large aggregates under the same salt
concentration.24 Afterward, the SWNTs settled on the bottom
of the vial after centrifugation, and the precipitate redispersed
in phosphate buffer.24 In the presence of TMB and H2O2, the
colorimetric signal of the obtained SWNTs with dsDNA was
remarkably higher compared to that without target DNA.24 In
addition, the target response proved to be sensitive, and our
colorimetric detection approach could be used to distinguish
SNPs in human DNA.24 Besides the direct application of
catalytic CNTs, we further developed a sensing and selective
strategy for copper detection by click chemistry and
combination of magnetic silica nanoparticles with CNTs
(Figure 4B).30

In addition, Huang et al. and our groups also found that
photoluminescent carbon nanodots possess high peroxidase-
like activity.31,32 Using this enzyme-mimicking activity, we
further developed a simple, cheap, and colorimetric assay for
glucose in real samples.31

2.2. Metal-Based Nanomaterials

In addition to carbon-based nanomaterials, metal nanomaterials
have also been explored to mimic the functions of natural
enzymes.13−18,41 Our interests were mainly put into GOx- or/
and peroxidase-mimicking activities of gold-based nanomateri-
als (i.e., mesoporous silica-encapsulated gold nanoparticles42

and gold nanoclusters43).
Gold colloids have fascinated scientists for over a century and

now have been heavily utilized in various applications.44,45

Historically, gold has been regarded as being chemically inert,

Figure 3. Schematic illustration of procedures for targets detection by using the catalytic GH and targets-induced assembly.29 Copyright 2013,
Elsevier.

Figure 4. (A) Protocol for SNP detection of complementary (C-
DNA) and mismatched (M-DNA) duplex DNA.24 Copyright 2010,
Wiley-VCH. (B) Protocol for sensing Cu2+ using click chemistry and
peroxidase-like catalytic color reaction.30 Copyright 2010, Royal
Society of Chemistry.
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but in recent years AuNPs with different surface modifications
have been found to exhibit GOx- or peroxidase-like
activity.14−16,46 After that, Fan et al. have constructed a new
sensor platform for sensitive detection of DNA and microRNA
by utilizing this GOx-like activity.17 However, the potential of
AuNPs as enzyme mimics is limited by their relatively low
catalytic activities and stability.17 In addition, single-component
AuNPs cannot simultaneously possess dual enzyme-like
functionalities, as unsupported AuNPs with different surface
properties only keep one enzyme-like functionality active while
the other catalytic activity can be completely blocked.15,46

Recently, the emergence and recent advance of nano-
technology opens new opportunities for the development of
nanoparticles with stable and high catalytic activity.47,48 With
this in mind, we set out to investigate the fabrication of AuNPs
encapsulated in expanded mesoporous silica support (EMSN)
(Figure 5A).42 EMSN as the skeleton assists the synthesis of a

high density of very small and dispersed AuNPs, hinders the
aggregation of neighboring particles, and facilitates the catalytic
reaction by providing mesoporous diffusion channels. TEM
images reveal that a high density of very small AuNPs
immobilized on EMSN is well dispersed (Figure 5B).42 Since
the catalytic properties of AuNPs are strongly dependent on
their particle size and stability,47 the small and stable AuNPs
may exhibit much higher catalytic activity. As expected, the
resulting EMSN-AuNPs showed high GOx- and peroxidase-like
catalytic activities (Figure 5C); whereas citrate-capped AuNPs
had very little activities at the same concentration.42

Although the prepared nanocomposites can be served as dual
artificial enzymes with high activities and stability, it is still a big
challenge to scale them up for assembling an enzymatic cascade
system due to the incompatibility of various reactions
operating. In our catalytic system, the optimal pH for their
GOx-like activity was 7.4, while this value for peroxidase-mimic
activity was about 4.0.42 Fortunately, as the first reaction
product gluconic acid is one of the organic acids, its production
in the system could decrease the ambient pH under the low

concentration of a buffer solution.42 Therefore, we offered an
effective way to eliminate the incompatibility of different
reactions and piece different activities together into a self-
organized artificial cascade reaction. Initially, EMSN-AuNPs
catalytically oxidized glucose by oxygen to yield gluconic acid
and hydrogen peroxide in 0.5 mM phosphate buffer, pH 7.4.42

Next, gluconic acid produced in the system decreased the
ambient pH, which could activate the peroxidase-like activity of
EMSN-AuNPs.42 In the presence of TMB, EMSN-AuNPs
could produce a blue color reaction owing to the oxidation of
TMB by cumulative product H2O2 (Figure 5D).42 This is the
first example using nanomaterials alone as dual artificial
enzymes for mimetic cascade catalysis.42 Therefore, the proof-
of-principle results take an important step forward in
developing enzyme mimics for realizing more complex
functions.
Recently, noble-metal nanoclusters have also become a

burgeoning area of scientific interest.49 Intriguingly, Wang et al.
discovered that bovine serum albumin-stabilized gold clusters
(BSA-AuNCs) possess intrinsic peroxidase-like activity.50

Inspired by these initial results, our group developed an easy
prepared fluorometric and colorimetric dual channel probe for
dopamine by using BSA-AuNCs.43 The as-prepared BSA-
AuNCs exhibited strong fluorescence and high peroxidase-like
activity.43 In the presence of dopamine, the fluorescence
intensity of the AuNCs decreased significantly through a
photoinduced electron transfer process (Figure 6A).43 Mean-

while, as the catalytic activity of AuNCs is extremely sensitive to
surface properties, their enzyme-like activity could be efficiently
restrained after their interaction with dopamine (Figure 6B).43

Both methods exhibited high sensitivity and excellent selectivity
toward dopamine over other interfering substances.43 More
importantly, we demonstrated the application of the present
method in hydrochloride injection sample, human serum
sample and PC12 cells.43

2.3. Metal Oxide-Based Nanomaterials

Like carbon- and metal-based nanomaterials, metal-oxides-
based nanomaterials have also emerged as efficient enzyme

Figure 5. (A) Schematic illustration for the synthesis of EMSN-
AuNPs.42 (B) TEM image of EMSN-AuNPs.42 (C) Schematic
illustration for dual enzyme-like activities of EMSN-AuNPs.42 (D)
Schematic representation of EMSN-AuNPs as intelligent enzyme
mimics for realizing artificial catalytic cascade.42 Copyright 2013,
Elsevier.

Figure 6. (A) Schematic representation of the fluorescence response
of the BSA-AuNCs to dopamine.43 (B) Schematic illustration of
peroxidase-mimicking catalytic color reaction for sensitive sensing of
dopamine.43 Copyright 2013, Elsevier.
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mimics.3,8−12,19,20 Among them, cerium oxide nanoparticles8−10

and magnetic nanoparticles3,11,12 are two most widely used
metal oxide catalysts. But this introduction will focus on our
interests in making use of CeO2 nanoparticle based ones.51

CeO2 nanoparticles, which exist in a mixed valence state
(Ce3+, Ce4+), possess many unique properties that have proven
to be of high utility in biomedical and catalytic applica-
tions.8,52−57 Recently, they have been reported to possess
multienzyme, such as SOD,10,54 catalase,9 oxidase,8,56 and
phosphatase,57 mimetic properties. For instance, Perez’s group
reported that nanoceria has an intrinsic oxidase-like activity at
acidic pH values, as it can quickly oxidize a series of
colorimertic dyes without any oxidizing agent.8 Following
these early works, we found that the pH-tunable oxidation
ability of nanoceria to ferrocenecarboxylic acid (Fc-COOH).51

After incubation nano-CeO2 with Fc-COOH solution at pH
7.4, there was no significant change in absorption or color.51

While after incubation at pH 4.5, the mixture solution displayed
a yellow to green color change with a new absorption band
appeared at 632 nm, which suggested the ferrocenyl moieties
could be oxidized to positively charged ferrocenium ions by
nano-CeO2 under acidic pH (Figure 7A).51 More interestingly,

ferrocene residue could tightly bind to β-cyclodextrin (β-CD)
via host−guest interactions, whereas the oxidized, positively
charged ferrocenium ion did not.51

Inspired by these unique features, we demonstrated a pH
stimuli-responsive vehicle for intracellular drug delivery by
using the β-CD-modified CeO2 as the capping agent (Figure

7B).51 To create this nanogated ensemble, ferrocene groups
were first introduced onto the outlet of mesoporous silica.51

Therefore, β-CD-functionalized CeO2 nanoparticles could cap
onto ferrocene-modified mesoporous silica through host−guest
interactions.51 After internalization into A549 cells by a
lysosomal pathway, the ferrocenyl moieties were oxidized to
ferrocenium ions by CeO2 lids, which could trigger uncapping
of the CeO2 and cause drugs release.51 Moreover, as cancer
cells have a more acidic cytosolic pH than normal ones, CeO2
with oxidase-like activity could oxidize some intracellular and
extracellular components to induce cancer cell apoptosis
(Figure 7C).51 This proof of concept provides a novel route
for using switchable enzymatic activity of CeO2 as capping
agents in the field of versatile controlled delivery nanodevices.

3. EXPLORING EFFICIENT MODULATORS
To keep up with the overall performance of natural enzymes,
one major activity is searching more efficient nanozymes, as
reflected by numerous recent publications.8−25 An alternative
strategy is exploring modulators to further enhance the
performance of existing artificial enzymes. Below, we introduce
three exciting push in the use of efficient modulators on
artificial catalytic systems.58−60

3.1. Ionic Liquid

In spite of the fascinating features of present peroxidase mimics,
one of the main shortcomings that these enzyme mimics
(including EMSN-AuNPs) suffer is that their catalytic perform-
ance at high temperature is far below expectations.3,23,58 As
they usually exhibit superior thermal stability to natural
enzyme,3,23,58 we rule out the possibility of this phenomenon
caused by nanozymes themselves, and point out that the
thermally induced instability of enzymatic product ABTS•+

inhibit their catalytic activity at high temperature (Figure 8A).58

Inspired by the unique properties of the ionic liquid, we
reasoned that it could serve as a stabilizing agent for improving
thermal stability of ABTS•+, and subsequently enabling high-
temperature reaction that were not working efficiently in buffer
solution. Indeed, in the presence of ionic liquid, their catalytic
activity and product stability at high temperature were much

Figure 7. (A) UV−vis spectra and photograph of (a) nanoceria alone,
(b) only Fc-COOH, and (c) their mixture at pH 7.4 and pH 4.5.51 (B)
Schematic illustration for pH-triggered release of the anticancer drug
from β-CD@CeO2 capped Fc-MSN.51 (C) Enzymatic activities of
CeO2 at different pH values.51 Copyright 2013, Wiley-VCH.

Figure 8. (A) Schematic illustration for the realization of high-
temperature catalysis by using thermally stable EMSN-AuNPs and
ionic liquid.58 (B) Thermal stability of enzymatic product in different
fluids.58 (C) Catalytic activities of EMSN-AuNPs as a function of
incubation temperature in different fluids.58 Panels (A)−(C) reprinted
with permission from ref 58. Copyright 2013 American Chemical
Society.
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greater than that obtained in the absence of ionic liquid (Figure
8B, C).58 Such a positive effect is possibly connected with their
weak interactions with product, a large number of cations and
anions, and their greater solvation power.58 Our findings pave
the way to applying ionic liquid as a positive modulator in
nanozyme-based catalytic reactions.

3.2. Graphene Oxide

Compared with other nanomaterial-based peroxidase mimics,
AuNCs as nanozymes are more prominent for bioanalysis due
to their small size, excellent stability, and biocompatibility.50

Despite these favorable properties, AuNCs usually suffer one
main shortcoming: its optimum reaction occurs in acidic
solution, which seriously restrict its applications in biological
systems where a near neutral pH is required. To overcome this
drawback, we demonstrated that GO could serve as the enzyme
modulator to regulate the peroxidase-like activity of lysozyme-
stabilized AuNCs (Figure 9A).59 The most exciting feature of
the synergistic GO-AuNCs hybrid is that it exhibits high
catalytic activity over a broad pH range, even at neutral pH.59

As shown in Figure 9B, hybrid catalyst exhibited excellent

catalytic activity at neutral pH, whereas, both GO and AuNCs
showed almost no activity.59 Significant activity enhancement
indicated that GO played an important role in modulating the
catalytic activity of the AuNCs. Initially, TMB could be
absorbed onto GO efficiently as GO possessed high surface-to-
volume ratios as well as high affinity for hydrophobic
molecules.23 After that, the active site of AuNCs and substrate
TMB were confined in the same nanoscale region, which could
greatly enhance the catalytic activity of AuNCs.59 This
mechanism was similar to that of natural enzymes in which
the extraordinarily high catalytic efficiency was largely due to
the ability to bring substrates into proximity with their active
sites.2 Consequently, the hybrid catalyst showed an excellent
peroxidase-like activity over a broad pH range, thus opening
this novel catalytic system for a multitude of potential
applications in biological systems.59 For instance, upon
conjugation of folic acid to the hybrid, we have utilized the
target-functionalized nanohybrid (GFA) as a robust nanoprobe
for selective, quantitative, and fast colorimetric detection of
cancer cells at physical pH, which would provide a drastic
positive effect on diagnosis and prognosis (Figure 9C).59

Figure 9. (A) Schematic illustration of the high catalytic activity of synergistic GO-AuNCs hybrid in a fairly broad range of operating pH.59 (B)
Time-dependent absorbance changes at 652 nm in the presence of (1) GO, (2) AuNCs, and (3) the GO-AuNCs hybrid at pH 7.0.59 (C) Schematic
representation of preparation of GFA and cancer cell detection by using target-directed GFA.59 Copyright 2013, Wiley-VCH.

Figure 10. (A) Increased catalysis of nucleoside triphosphates (NTPs) to oxidase-like activity of nanoceria.60 (B) Schematic illustration of the
coupling of the oxidative reaction with the NTP hydrolysis reaction.60 Copyright 2013, Wiley-VCH.
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3.3. Nucleoside Triphosphates

Very recently, we reported that nucleoside triphosphates
(NTPs) could be used as coenzymes improve the oxidase-like
activity of nanoceria and that activity enhancement is related
with the type of NTPs (Figure 10A).60 Since the nanoceria has
both oxidase-like8 and phosphatase-like57 activities, such
increased catalysis resulted from the coupling of the oxidative
reaction with the NTP hydrolysis reactions (Figure 10B).60 In
addition, the difference of the improvement effect reflected the
different dephosphorylation catalytic activities of nanoceria to
the NTP used.2 Based on these intriguing results, we also
developed series effective and high-throughput colorimetric
assays for single-nucleotide polymorphism (SNP) typing.60

4. CHALLENGES AND FUTURE OPPORTUNITIES
To better understand the challenges and opportunities of
nanozymes, the main advantages and disadvantages of nano-
zymes and natural enzymes are presented in Table 1. Under
comparison, artificial enzymes are less vulnerable to denatura-
tion, low-cost, easy to obtain, and more stable to
biodegradation. In addition to the above advantages shared
with other enzyme mimics, nanozymes also possess their
unique features, including large surface area for further
modification and other specific functions besides catalysis
(e.g., magnetic property of magnetic nanoparticles).
Despite these advantages, there are four important challenges

that remain for efficiently directing the development of
nanomaterial-based artificial enzymes (Table 1). (1) Nano-
zymes usually exhibit the relatively low catalytic activity, in
comparison with natural enzymes. In this respect, the
development of enzyme mimics to be able to show excellent
enzyme-like activity will have great potential for the next
generation of mimetic enzyme systems. Alternatively, our
recent works have started to address this issue by exploring
efficient modulators.58−60 (2) Nanozymes often have a lower
binding affinity and lower specificity for substrate than natural
enzymes. In contrast, due to their unique catalytic micro-
environments, enzymes exhibit high binding affinity and
substrate specificity. In their active site, a pocket is available
for substrate recognition and catalysis. For this reason, the
exterior surfaces of nanomaterials may be coated with
functional groups similar to those exposed by enzymes,6 thus
enhancing their binding affinity and substrate specificity.
Meanwhile, it can accelerate the chemical transformations by

bringing substrates into proximity with active sites.2 (3) The
types of nanozyme catalytic reactions are limited to only redox
type reactions and hydrolytic reactions, whereas enzymes are
known to catalyze various types of biochemical reactions.
Therefore, further investigations are indeed essential to
construct novel nanozymes for catalyzing other types of
reactions. (4) Rational design of efficient nanozymes is still
remains a big challenge. A solution to this problem may be
offered by the rapidly growing field of nanotechnology.47,48

Besides resolving those problems mentioned above, future
work in nanozymes technology is likely to continue to focus on
the exploitation of their potential applications and piece these
synthetic nanocomponents together into organized functional
systems.

5. CONCLUSIONS
Over the past few decades, natural enzymes have been a
constant source of inspiration for chemists in their efforts to
create synthetic structures that mimic their functions and
promote catalysis. In this Account, we summarized our recent
development in the field of nanozymes. The studies featured
herein attempt to understand and apply nanomaterials as
enzyme mimics and, more significantly, shed light on the
improvements of these catalytic nanomaterials and their
promising applications in biomedical diagnosis, environmental
monitoring, and therapeutics.
Despite the fact that there are still many unresolved issues

and challenges, the unique properties and functions of these
enzyme mimics and the promising results exhibit that this field
will continue to thrive and mature in the years to come.
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